Zero Emission flexible vehicle platforms with modular powertrains serving the long-haul Freight Eco System
Long-haul BEVs and FCEVs need to become more affordable and reliable, more energy efficient, with a longer range per single charge, and a reduced charging time to meet the user’s needs. Next to those, there is a real need to take zero-emission long-haul goods transport in Europe to the next level by executing real-world demonstrations of BEVs and FCEVs spread all over Europe; this also requires that technology soon can deliver on promised benefits (easy handling, similar driving hours & charging/fueling, and high speeds, and ability to operate in complex transport supply chains); flexible and abundant charging points for the rising number of vehicles must be implemented fast and to support this, novel charging concepts are needed. In addition, as multiple needs in the logistics chain exist, require novel tools for fleet managers providing them with better information on ZEV in logistic operation, providing a twin of the real use thereby giving valuable information regarding predictive maintenance, eco-driving etc., providing information on better logistics planning, the (available) charging and refuelling along the route, access to roads and traffic information.
ZEFES major outcomes: Executing of real-world demonstrations of long-haul BEVs and FCEVs across Europe to take zero-emission long-haul goods transport in Europe to the next level. Pathway for long-haul BEVs and FCEVs to become more affordable and reliable, more energy efficient, with a longer range per single charge and reduced charging times able to meet the user’s needs. Technologies which can deliver promised benefits (easy handling, similar driving hours & charging/fueling, high speeds and ability to operate in complex transport supply chains). Mapping of flexible and abundant charging/fueling points and novel charging concepts. Novel tools for fleet management to support the rising number of long-haul BEVs and FCEVs vehicles in the logistics supply chains.
This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement number 101095856.
Applus+ uses first-party and third-party cookies for analytical purposes and to show you personalized advertising based on a profile drawn up based on your browsing habits (eg. visited websites). You can accept all cookies by pressing the "Accept" button or configure or reject their use.. Consult our Cookies Policy for more information.
They allow the operation of the website, loading media content and its security. See the cookies we store in our Cookies Policy.
They allow us to know how you interact with the website, the number of visits in the different sections and to create statistics to improve our business practices. See the cookies we store in our Cookies Policy.